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Three main experimental aspects:
• The erosion, deuterium retention and codeposition properties of 

graphite exposed to a beryllium-containing deuterium plasmas

• The erosion, deuterium retention and codeposition properties of 
tungsten exposed to deuterium plasma containing beryllium 
impurities (as well as with and without (in TPE) carbon impurities)

• The erosion and deuterium retention behavior of beryllium
exposed to deuterium plasma at temperatures approaching the 
Be melting temperature 

Verification of surface and edge plasma models:
TRIDYN (IPP), ERO (KFA), WBC (ANL), UEDGE (UCSD)
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PISCES-B has been modified to allow exposure of 
samples to Be seeded plasma
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A commercial dopant cell (from Veeco EPI) is 
used to seed PISCES-B plasma with Be atoms.

• 2000°C maximum temperature
• 1x 1022 Be atoms/sec maximum seeding rate (>plasma flux)
• 12° beam spread (measured with Li)
• Shutter for blocking beam during warm up and cool down
• PISCES plasma provides high ionization efficiency
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PISCES-B operation above 6 eV Te provides 
complete ionization of the thermal Be atom beam

• Be II line emission @ 467 nm is 
used to measure Be ion density 
(along with ADAS rate 
coefficients)

• Be oven temperature controls 
Be ion density in the plasma

• Be concentration is fairly 
constant along the plasma 
column
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IPP supplied witness plate manipulator system 
collects eroded material in PISCES-B

• Witness plate is shielded from 
cross-field plasma flux

• Independent control of witness 
plate temperature (r.t. – 500ºC)

• Be containing samples will be 
analyzed at UCSD and IPP-
Garching
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WPM is installed on PISCES-B
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Results from experimental task #1

• The erosion, deuterium retention and codeposition
properties of graphite exposed to a beryllium-containing 
deuterium plasmas

• The erosion, deuterium retention and codeposition
properties of tungsten exposed to deuterium plasma 
containing beryllium impurities (as well as with and 
without (in TPE) carbon impurities)

• The erosion and deuterium retention behavior of 
beryllium exposed to deuterium plasma at temperatures 
approaching the Be melting temperature 

Task 1

Task 2

Task 3
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A small beryllium impurity concentration in the 
plasma drastically suppresses carbon erosion 

-50 V bias, 200ºC, Te = 8 eV, ne =  3 e 12 cm-3
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Beryllium particle balance can give an estimate of 
expected equilibrium surface concentration

Be Film Growth Rate = Deposition Rate – Removal Rate = 0 

Be Deposition Rate = fBe(1-Rf)Γpl 

where, fBe is the Be concentration in the plasma, Γpl is the 
incident plasma flux and Rf is the Be ion reflection coefficient

Be Removal Rate =
[cBeYBeΓpl (1-Rd) + Dbulk(T) + cBeY(T)Γpl (1-Rd)] 
where, cBe is the Be surface concentration, YBe is the low temp. 

sputtering yield of Be, Rd is the redeposition fraction, Dbulk(T) 
accounts for diffusion of Be into the C bulk, and Y(T) is the 
temperature dependent erosion yield term.

ignorable at low temp
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Exposure of graphite to plasma containing a 
small Be concentration quickly leads to 

complete surface coverage by Be coatings.

• Deuterium plasma w/Be injection
• Graphite sample temp = 60ºC
• Exposure duration = 10,000sec
• 3e18 ions/cm2s
• 50 eV ion bombarding energy

• Experimental data consistent 
with 90% redeposition

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

Measured surface concentration
Redeposition fraction = 0%
Redeposition fraction = 25%
Redeposition fraction = 90%

Incident Be fraction in plasma (%)

U C S D
University of California San Diego

R. Doerner, Nov. 2003
PFC Meeting, Oakbrook, IL.



Redeposition in these PISCES-B 
plasmas should be only about 25%

• Measured ionization mean-free 
path agrees with ADAS 
calculations

• Assume cosine sputtering 
distribution

• Redep fraction ~ (rs/λion) = 25%

• Be layers cover witness plate 
samples
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Modeling may help unravel this mystery

• TRIDYN is focusing on the evolution of a multi-
component surface (i.e. preferential carbon erosion may 
increase Be surface concentration)

• ERO is examining effects associated with plasma 
physics effects (i.e. redeposition, transport)

• Molecular deuterium ions may also be important (i.e. D+, 
D2

+, D3
+)
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What does this all 
mean for ITER?

)( What does this all 
mean for Carbon?
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Be surface coverage depends not only on 
fBe, but also strongly on Rd
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• Even for low Be impurity 
concentrations in the incident 
plasma full Be surface coverage is 
likely

• For Be impurity concentrations 
above 2%, full surface coverage 
always occurs (i.e., fBe > YD-Be)

• ITER will have fBe ~1-10% and 
large valves of Rd, so full Be 
surface coverage of in vessel 
components should be expected
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Will everything change due to high surface 
temperature of the ITER divertor plates?

Be Film Growth Rate = Deposition Rate – Removal Rate 

Be Deposition Rate = fBe(1-Rf)Γpl 

where, fBe is the Be concentration in the plasma, Γpl is the 
incident plasma flux and Rf is the Be ion reflection coefficient

Be Removal Rate =
[cBeYBeΓpl (1-Rd) + Dbulk(T) + cBeY(T)Γpl (1-Rd)] 
where, cBe is the Be surface concentration, YBe is the low temp. 

sputtering yield of Be, Rd is the redeposition fraction, Dbulk(T) 
accounts for diffusion of Be into the C bulk, and Y(T) is the 
temperature dependent erosion yield term.
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First a brief summary of results from 
experimental task #3

• The erosion, deuterium retention and codeposition
properties of graphite exposed to a beryllium-containing 
deuterium plasmas

• The erosion, deuterium retention and codeposition
properties of tungsten exposed to deuterium plasma 
containing beryllium impurities (as well as with and 
without (in TPE) carbon impurities)

• The erosion and deuterium retention behavior of 
beryllium exposed to deuterium plasma at temperatures 
approaching the Be melting temperature 

Task 1

Task 2

Task 3
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Radiation Activated Adatom Sublimation 
Model of High-Temperature Erosion

R.P. Doerner, S. I. Krasheninnikov and K. Schmid*
University of California at San Diego 

*Max-Plank Institute für Plasmaphysics

• Experiments observe enhanced loss of thermally released particles 
during bombardment of surfaces at elevated temperature

• Energetic particle bombardment of surfaces creates mobile surface 
adatoms

• Adatoms are less tightly bound to surface and therefore 
evaporate/sublimate more readily at lower temperature

• Measured enhanced erosion follows an Arhenius scaling with a reduced 
effective evaporation/sublimation energy

• Calculation of the adatom binding energy agrees with measured 
effective evaporation energy
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RAAS Model Explains Observations of Enhanced 
Erosion from both Solid and Liquid Surfaces
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RAAS model can be used to predict 
temperature dependent erosion rates of 

Be layers in ITER
• Temperature dependent erosion rate R(T) can be written:

– Where and 

• Eeff, Ko, no and Eo are material constants
• Yps, Yeff depend on the incident ion energy
• Jin is the incident ion flux to the surface 

(i.e. depends on experimental condition)

R(T) =  Jin  Yps +  Yeffexp(−Eeff /T){ } + Konoexp(−Eo/T)

Yeff =  KadYadτad
o Eeff = Ead − ED
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RAAS model also agrees with the Li 
erosion increase observed in ion beam 

data, where flux is 105 lower.
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• PISCES-B plasma flux is 2e18 
cm-2s-1

• IIAX flux is 5e13 cm-2s-1, 
equilibrium evaporation was 
subtracted from data by the 
authors in the publication          
[J.P. Allain et al., JNM 313-316 (2003) 641.]

• Yad increased by 3 (from TRIM 
Yps increase) to account for 
incident particle trajectory 
(700 eV, 45º angle)
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When high temperature enhanced erosion is 
included in the analysis Be surface layers 

are still expected to form

• High temperature erosion is 
dominated by thermal release 
of particles, so redeposition is 
even higher

• Erosion mechanisms are 
relatively unimportant in high 
redeposition regimes

• Diffusion into the bulk is small 
at 800ºC [K. Schmid, A. Wiltner, Ch. 
Linsmeier, "Measurement of Beryllium Depth 
Profiles in Carbon", submitted to Nucl. Inst. 
Meth B. (2003).]
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Redeposited material collected on the WPM during 
Be seeding shows reduced carbon concentration

• Primarily Be deposition on WPM during Be seeding runs

• C content in WPM films decreases during Be seeding

• C content decreases with increasing sample exposure 
temperature (up to 750ºC) [recent measurements extend sample 
temperature up to 1060ºC, but results are still being analyzed]

• D content in WPM films will be determined by IPP-
Garching using NRA and RBS
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What should ITER Team worry about?

• Carbon physical and chemical erosion disappear when Be layers form on 
PISCES-B targets

• ELMs may vaporize any Be surface layer, but that layer will quickly 
redeposit and reform

• Redeposited material is primarily Be

• Is chemical erosion of graphite still important for ITER? 

• Will tritium accumulation may be dominated by the beryllium surfaces that 
form at locations with line-of-sight views of the strike points?

• What will the role of exfoliation, dust, detachment without carbon erosion, … 
be?

• Given the implications of these results, experiments should be devised to 
verify these effects in a toroidal geometry.

Conclusions:

Issues:

Recommendation:
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